Chapter 4

Engineering Computing |

The C programming Language

Chapter 4
Functions and Program Structure

Functions

U Functions break large computing tasks into smaller ones

U Functions enable programmers to build on what others have
done instead of starting over from scratch.

U Appropriate functions hide details of operation from parts of
the program that don’t need to know about them thus
clarifying the whole, and easing the pain of making changes.

U C has been designed to make functions efficient and easy to
use

U C programs generally consist of many small functions rather
than a few big ones.

Spring 2011 Chapter 4 2

3/31/2012

Chapter 4

Basics of Functions

To begin with, let us design and write a program to print each line of its input
that contains a particular “pattern” or string of characters. (This is a special
case of the UNIX program grep.) For example, searching for the pattern of
letters “ould” in the set of lines

Ah Love! could you and | with Fate conspire
To grasp this sorry Scheme of Things entire,
Would not we shatter it to bits -- and then
Re-mould it nearer to the Heart’s Desire!

while (there’s another line)
will produce the output if (the line contains the pattern)
print it

Ah Love! could you and | with Fate conspire
Would not we shatter it to bits -- and then
Re-mould it nearer to the Heart’s Desire!

Spring 2011 Chapter 4 3

Basics of Functions

Twhile (there’s another line)
-—=if (the Iine contains the pattern)

I

1

\ (/ Sprint i
\

\ r
\ | ;
1
/J\find all }ines matching Pattern */
main () \ /
{ \ \ Vs
. 7
‘char 11nekMAXLINE};’
int found ¢ 0; .7
él \ L//
while (getline(line, MAXLINE) > 0)
if (stryndex(line, pattern) >= 0) |
printf ("%s", line);
found++;

return found;

Spring 2011 Chapter4 4

3/31/2012

Basics of Functions

/* getline: get line into s, return length */
int getline(char s[], int 1lim)

{

int <, 1i;

i = 0;

while (--1lim > 0 && (c=getchar()) != EOF && c != "\n’)
sli++] = c;

if (c == "\n’)
s[i++] = c;

s[i]l = "\o’;

return i;

Spring 2011 Chapter 4 5

Basics of Functions

/* strindex: return index of t in s, -1 if none */
int strindex(char s[], char t[])

{

int i, 3, k;

for (i = 0; s[i] t!= *\O’; i++) {
for (j=i, k=0; t[k]!="\0" && s[jl==t[k];| j++, k++)
if (k > 0 & t[k] == '\0’)
return ij;

}

return -1;

Spring 2011 Chapter4 6

Chapter 4

3/31/2012

Chapter 4

Function Definition

return-type function-name(argument declarations)

declarations and statements

/

dummy () {}

Spring 2011 Chapter 4

Functions Returning Non-integers

#include <ctype.h>

/* atof: convert string s to double */
double atof (char s[])

double wval, power;
int i, sign;

return sign * val / power;
}

Spring 2011 Chapter4

3/31/2012

Chapter 4

External Variables

U A C program consists of a set of external objects, which
are either variables or functions.

U The adjective “external” is used in contrast to “internal”,
which describes the arguments and variables defined inside
functions.

U External variables are defined outside of any function, and
are thus potentially available to many functions.

U Functions themselves are always external, because C does
not allow functions to be defined inside other functions.

U Because external variables are globally accessible, they
provide an alternative to function arguments and return
values for communicating data between functions.

Spring 2011 Chapter 4 9

Example of External Functions

#define NUMBER ‘0’ void push(double f)

{
}

double pop (void)

int getop(char []
void push(double)
double pop (veid);

)i

main()

}

push (. .);
getop (« . 4 ;
pop ();
} f#define NUMBER 0’
void push(double f) main ()
{ {
push (.. .);
} getop (v 4 ;

double pop (void) pop ()

}

Spring 2011 apter 4 10

3/31/2012

Chapter 4

Spring 2011

Example of External Variables

in file2:

int sp = 0;

extern int sp; double wval [MAXVAL] ;
extern double wvall];
void push(double £) { ... }
double pop(void) { ... }
Chapter 4 11

Spring 2011

Scope Rules

The scope of a name is the part of the program
within which the name can be used

Funcl(int x, int y)4
inta;, S — ;
’ Local or automatic

variables:

X,y,aandj

{
for(int j=0; j<10 j++)
Scope of local variabe

a=1; V/ i
}

Scope of local
i=0; ¢ variabes x, y, and a

Chapter4 12

3/31/2012

Chapter 4

Multiple Source Files

extern intd, ef;

int a;

void funcl(argsl);

void func2(args2) ;
extern void func3(argsl);
extern void func4(args2) ;
main(...) { ...}

int b;

extern intc;
funcl(argsl) {...}

intc;

func2(argsl) {...}

int d;
extern void funcl(argsl);
extern void func2(args2) ;

inte;

externint f;
func3(argsl) {...}
intf;
funcd(argsl) {...}

Spring 2011

13

Header Files

cale.h

Felmrane

Spring 2011

woid pmsh{donble):
double g 4l

©3id omgetchlintd -

- g ARpEEEL

oobl= poplreid) [

3/31/2012

Chapter 4

main.c

#include <stdio.h>
#include <stdlib.h>
#tinclude “calc.h”
#define MAXDP 100
main() {

}

Spring 2011

Chapter 4

Header Files

stack.c

#include <stdio.h>
#include “calc.h”
#define MAXVAL 100
Intsp =0;

Double val[MAXVAL]
void push(double)

}

15

A register declaration
U advises the compiler that the variable in question will be

Register Variable

heavily used.
UThe idea is that register variables are to be placed in

machine registers, which may result in smaller and faster
programs

Spring 2011

register int x;
register char c;

f(register unsigned m, register long n)

register int i;

Chapter4

16

3/31/2012

Chapter 4

Register Variable

| ALU | Memory

| Register l;\ | | Register B V| |

| Register C | | Register D |

| Register E N Register F | /-
Spring 2011 Chapter 4

17

Block Structure

if (n > 0)

int i; /* declare a new i */
for (i = 0; 1 < n; i++)
Spring 2011 Chapter 4

18

3/31/2012

Chapter 4

Initialization

int x = 1;
char squota = "\'’;

long day = 1000L * 60L * 60L * 24L; /* milliseconds/day */

int low, high, mid;

i % binsearch(int x, int v[], int n)
{ %
Jint low = 0;
int high = n - 1;
int mid;
}
Spring 2011 Chapter 4 19
L] L] [] []
Size Initialization
omitted
int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

Spring 2011 Chapter4

20

3/31/2012

10

Chapter 4

L J L] [] o
Initialization
char pattern = "ould"; = %
‘ Equivalent
char pattern[] = { ‘o’, ‘u’, 17, *d’, '\o’' };

Spring 2011 Chapter 4 21

The C Preprocessor

C provides certain language facilities by means of a
preprocessor, which is conceptionally a separate
first step in compilation:

> #include

» #define

» Conditional Compilation
»Macros with Arguments

Spring 2011 Chapter4 22

3/31/2012

11

Chapter 4

File Inclusion

#include "filename"

#include <filename>

UThey include common #define statements and extern
declarations and function prototypes

UThere are often several #include lines at the beginning of a
source file

Q#include is the preferred way to tie the declarations together for
a large program

Uit guarantees that all the source files will be supplied with the
same definitions and variable declarations

Uwhen an included file is changed, all files that depend on it must
be recompiled

Spring 2011 Chapter 4 23

Macro Substitution

—am—
#define name replacement text

name = replacement text

#define max(A, B) ((n) > (B) 2 (A) : (B))

x = max(p+q, r+s); = x = ((p+g) > (r+s) ? (p+q) : (r+s));

#undef getchar

Spring 2011 Chapter4 24

3/31/2012

12

Chapter 4

Conditional Inclusion

Uit is possible to control preprocessing itself with conditional
statements.

UThis provides a way to include code selectively, depending on
the value of conditions evaluated during compilation.

UThe #if line evaluates a constant integer expression.

QIf the expression is non-zero, subsequent lines until an #endif or
#elif or #else are included.

Spring 2011 Chapter 4 25

Conditional Inclusion

#if !defined (HDR)
#define HDR

/* contents of hdr.h go here */

#endif
#if SYSTEM == SYSV
#define HDR "syswv.h"
#elif SYSTEM == BSD
#define HDR "bsd.h"
#elif SYSTEM == MSDOS
#define HDR "msdos.h"
#else
#define HDR "default.h"
#endif

#include HDR

Spring 2011 Chapter4 26

3/31/2012

13

Chapter 4

Conditional Inclusion

The #ifdef and #ifndef lines are specialized forms that test
whether a name is defined. The first example of #if above could
have been written

#ifndef HDR
#define HDR

/* contents of hdr.h go here */

#endif

Spring 2011 Chapter 4 27

3/31/2012

14

